
Deploying services at Lemon

2022-05-30

Objective

The goal of this document is to present how developers at Lemon will deploy new services in
the near future. We strive to implement a flow that minimizes the effort necessary from a
developer perspective to go from 0 to a service running in production. We plan to do this by a
combination of a tool, provided by the infra team, and a set of conventions. In the end
developers should be able to go from 0 to service with a variation of commands similar to:

lemi new service –name=svc-name –envs=pre,prod –domain=svc.lemon.me
git add . && git commit -m “Deploy new service”
git push

We understand that there are many technical constraints and concerns that have to be taken
into account when deploying services and this document tackles only those that we thought
were relevant given the reality Lemon is currently facing, which is:

We are a small team that will not grow significantly in size in the next two years but
will be tackling relevant projects and we believe that a services oriented architecture
is the next step forward.

For this reason, we believe it makes sense to focus on building the tools necessary to make
teams productive for the short to medium term. Nevertheless, we’ve documented here which
are those things that we are leaving pending to be solved in the future and what our action
plan is for each.

Proposal

We start by separating Static from Dynamic Infrastructure. Static infrastructure are
dependencies such as databases, caches, VPN/VPCs, S3 buckets and others that require
more explicit provisioning. We plan to implement terraform and a single infrastructure
repository that will hold all static infrastructure. The provisioning of these resources will be
done through a PR to this central repository. This will allow us to guarantee that:

● Our Infrastructure is always reproducible,
● All changes made to it are tracked through git and IaaC,
● Ownership of resources will be explicit and clear since the creation of said resources

will start by a developer requesting it,
● Everything created has the correct tags to facilitate observability and cost ownership.

The creation of secrets will be handled separately and it is still TBD.



With the provisioning of those dependencies out of the way what is left is to deploy the
Dynamic Infrastructure, this is the service itself and everything necessary to reach it from
other services and/or the internet. This includes:

● Deployment: Creating the Service in the ECS clusters corresponding to each
environment. This service will be created with resource parameters (CPU & memory),
environment variables (that can come from secrets) and auto scaling policies that will
be controlled by the owners of the service.

● Discoverability: A service will be mapped into the DNS following a convention based
on the repository+branch name. Avoiding an eventual collision issue.

● Internal Routing: Routing rule in the corresponding Internal Application Load Balancer
that can be used within the VPC to access the service.

● External Routing: If the service requires access from the internet, create a routing rule
in the internet facing Application Load Balancer that maps to a domain specified by
the team.

● Security Access: A Security Group called svcname-clients that other resources can
attach themselves to to be able to communicate with this service. Attaching the
service to the necessary Security Groups to access the required dependencies (such
as other services and/or databases).

● Observability: Datadog Dashboard dedicated to the observability of the service and
all of its dependencies required to operate.

All that is mentioned above essentially lists everything developers have to provision
themselves when creating a service. To remove this burden from them, we plan to provide an
abstraction through a YAML specification file that abstracts away all this complexity required
to put a service in production. This file will be stored within the repository in a folder called

deploy. The specification of this file will be owned by the infra team. To generate this file
developers will have to execute a CLI that the infra team will provide, this CLI will receive as
input:

● Service Name: by convention it has to start with the name of the repository.
● Service dependencies: list of the names of services that this service communicates

with.
● Environments: list of environments the service needs, only available values are those

that the infra team supports (pre, prod and qa at the moment). However, this could
evolve into something richer that provides brand new environments with the creation
of a simple branch.

● DB/Cache dependencies: names of the databases (RDS) or caches (elasticache) that
the service communicates with. Other services could also be supported.

● External DNS if required: specify whether the service requires outside access.
● Memory and CPU requirements: using AWS’s format developers have to specify what

requirements they have for these resources.
● Auto-Scaling policies: we will provide a wrapper for AWS’s standard way of auto

scaling, which for now is either based on a memory or CPU and a threshold.

Once it is executed, the CLI is in charge of:



● Generating files for dependency management (if not already present), this will be

using gradle.
● Generating a Dockerfile for packaging (if not already present).
● Creating a PR on the central terraform repository with the changes necessary to

provision all of the above.
● Generating the YAML file with the inputs that were specified in the command.
● Generating per environment configuration files to define environment variables and

secrets.
● Instructing developers to fill in the YAML file with whatever else is necessary, for

example: environment variables.

● Generating the .github/workflows file with all of the building, testing and
deploying workflows already pre configured to point to the correct ECR and ECS. With
the ability to perform rollbacks.

After finishing these steps and pushing the corresponding files to GitHub developers should
have a service ready to be deployed.

All of the above is based on a series of conventions that teams will have to follow for their
services. These are:

● Communication: services will expose an HTTP API on port 8080 that will be the main
entry point.

● Healthcheck: all services have to expose a /health endpoint on the same API that
responds with a 200 when the service is healthy and any other code when it is not.
This endpoint has to check all necessary dependencies for the service to function (e.g
a database might be required but a cache might not).

● Observability: all services will implement OpenMetrics, they will expose an API on port
9090 with an OpenMetrics endpoint that lists all relevant metrics the service needs to
track.

● On Call & Service Ownership: each repository will have an OWNERS file with the list
of GitHub users that are the owners of this service and are responsible for operating it
in production.

● Packaging: all services will be packaged with Docker using a standard Docker Image
provided by the infrastructure team.

● Testing: all services will use Gradle for dependency management and will have to
implement three commands (the CLI will use the entry points to this commands):

○ ./gradlew test: unit and other simple tests

○ ./gradlew integrationTest: integration tests.

○ ./gradlew e2eTest: end to end tests.
● Building: jars will be built using gradle and the service has to provide a command

called./gradlew build (the CLI will provide the entry points to this commands)

In this section we will go into the details of how each of these steps will be implemented and
what tools the infrastructure team has to provide.



Implementation

In this section we will explain in detail how the proposal will be implemented and how each
step will work both from a developer and infrastructure point of view.

We start with the provisioning of Static Infrastructure. This includes: Databases, Caches,
VPNs / VPCs, Lambdas, S3 buckets and anything else that can be considered part of
provisioning but that will not change with the deployments that teams do. This process will
have a manual component for now. Once a team defines what requirements they have for
static infrastructure they can go directly to our terraform repository and create a PR that
provisions the requirements they have. We will provide terraform modules that will facilitate
the amount of tf code devs have to write and will abstract our basic stacks (such as an app
with an RDS database using mysql). This PR can eventually be generated using the CLI that
was already mentioned above, but we believe it’s easier to start by having them come to this
repo so that we can see more directly what use cases we have to support. The naming of all
these resources needs to follow a strict convention, all resources need to have the name of
the service prepend. For example:

● Databases: bpg-aurora, bpg-rds
● VPC/VPN: bpg-coelsa-vpc
● S3 buckets: bpg-<purpose>
● Lambdas: bpg-<function-name>

While the process above is being taken care of, developers can start with the definition and
provisioning of Dynamic Infrastructure. This is done with the execution of the CLI provided
by the infra team. To more easily demonstrate how the process will work we will use this
service that we build and maintain. First we execute the CLI specifying all the parameters
mentioned above, this includes: Service Name, Service Dependencies, Database/Caches,
environments, external DNS requirements:

lemoninfra init service –name=klausapproves –envs=pre,prod –external=true
–svc-dependencies=bpg
–datastore-dependencies=klausapproves-rds,klausapproves-cache –cpu=X
–memory=X –auto-scaling=resource=cpu,min=1,max=10

The command above will first create a PR to our terraform repository that will provision the
routing rules for internal and external access following our conventions (such as:

svc-name.env.internal.lemon.me and svc-name.env.lemon.me), create the
Service in our ECS cluster for both pre and prod environments, add said service to the

security group of bpg-clients, klausapproves-rds-clients and

klausapproves-elasticache-clients and finally give all repository/service owners
execution access to the containers of the service. It will then generate a YAML specification

file, that leaves in a folder called deploy, that contains information about this service, this file
will look similar to:

type: service

name: klausapproves

https://github.com/lemonatio/klausapproves
https://github.com/lemonatio/klausapproves


spec:

image: klausapproves

resources:

cpu: X

memory: X

autoscaling:

resource: cpu

min: 1

max: 10

ingress:

external: true

dependencies:

services:

- bpg

data:

- klausapproves-rds

- klausapproves-cache

environment:

- key: KLAUSAPPROVES_VARIABLE

value: {{ .Variables["klausApproves"] }}

- key: KLAUSAPPROVES_SECRET

value: {{ .Variables["klausApiKey"] }}

In addition to this file, it will also generate two folders that will hold a configuration file to store
per-env variables and secrets, example for prod:

variables:

- key: klausApproves

value: false

secrets:

- key: klausApiKey

value: secret_arn_prod.field_name

Finally the tool will generate a standard github workflow file that will implement the process of
building, testing and continuously deploying the application to the different environments. For
doing this the workflow will::

● Build and push a docker image tagged with the commit sha for merges done to

develop.
● Build a docker image for new tags that follow the semver format will build a docker

image tagged with said version.
● With the image specified, the pipeline will use our CLI and generate the

corresponding task-definition.json that needs to be deployed. The task
definition itself will almost always be identical, with the exception of the environment
variables that are populated by said tool.

● Develop will be pre and semver tags will be production.



All of the above explains the workflow when creating a new service from scratch, however, it
does not explain in detail how changes to this infrastructure will be made once the service is
already created. We document here a summary of what should be done for each type of
infrastructure:

● Static Infrastructure: this will always go through our terraform repository. Changes
such as a modification to the VPC, upscaling a database or a redis cluster will require
creating a new PR that modifies these resources.

● Dynamic Infrastructure: most of these changes can be controlled directly through the
repository and they can be taken care of by simply modifying the YAML of the service.
For example: changing the auto scaling policy or expanding the resources of the
containers.

What we are leaving for the future

Like it was mentioned previously, we are aware that there are many other technical
constraints and concerns that have to be taken into account when deploying services that we
have not covered in this document. This is intentional and it’s due to the reality that Lemon is
currently facing and the requirements it will have for the short to medium term. However, for
transparency and accountability, we leave below a list of the topics that we are not covering,
the reasoning for leaving out each one at this particular moment and when we plan to tackle
them.

AuthN & AuthZ

Why?
After our communications with the teams all the services that have to be launched in the short
to medium term will be services used internally, meaning they will not be exposed to the
internet. While having proper authentication & authorization with good role management is
important, we believe we can tackle the security team once it's more clear what our
requirements will be. For now we will trust on the infrastructure (private VPCs) and security
groups.

When?
We don’t have a specific timeline, but everything related to security is top priority to us and
we plan to tackle this with the security team as soon as possible.

Compatibility guarantees & controls

Why?
We believe this becomes problematic once the size of the organization has reached a point
where Team A makes changes to Service A that Team B (owner of Service B) never hears
about and problems happen in prod. For the short and mid term teams that own the services
will be the same ones that implement the clients of that service, which means the possibility of
this happening is reduced.

When?



We plan to observe the growth that the organization will have and act accordingly. If priorities
change and Lemon grows significantly, we will re-prioritize.

Standardized communication (REST vs gRPC)

Why?
Communication between services can be managed with HTTP for starters since we already
have a few tools that facilitate this integration. If gRPC, or others, is a better approach we
believe that a migration to that should be straightforward to do and could be executed in
parallel. This is due to the fact that there are many tools available today that give us the
possibility of having a dual stack (i.e HTTP and gRPC out of the box). This allows us to do a
progressive migration to the new stack.

When?
This is the least of our priorities at the moment. We prefer to focus immediately on
Observability and Developer Experience. However, Compatibility guarantee & Controls might
be directly related to this so we might solve both in the same step.

TLS Certificates and mTLS

Why?
Our approach to communication, both external and internal, will be to have two global
Application Load Balancers with routing rules for each service based on the Host header and
other application specific requirements. This means that TLS and mTLS will be offloaded to
AWS for now.
When?
We plan to see how well offloading the responsibility to AWS works and act accordingly. If this
doesn’t work well, we can discuss alternatives and priorities at that time.

Mono-repo vs multi-repo

Why?
Our infrastructure will be deployed using a mono-repo. From a developers perspective at the
moment we will support the ability of creating multiple services within a single repository but
they will also be able to deploy using multiple repositories.

When?
We will discuss from a tooling perspective what makes more sense in the coming months.

Appendix
1 - Provisioning process flow

https://docs.google.com/document/d/1cMmYVrHWI-_Y4jz1iMKgpu83x9h-I-cZizuoBKpwHl8/edit#

